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Abstract*An approximate method of estimating the maximum saturation, the nucleation rate, and
the total number nucleated per second during the laminar #ow of a hot vapour}gas mixture along
a tube with cold walls is described. The basis of the approach is that the temperature and vapour
concentration di!erences between the wall and a point in the tube are approximately proportional
to R(r)Z(z) and R(r)F(Z(z)), respectively, where r and z are dimensionless radial and axial coordinates
and R, Z, and F are known functions. Key parameters determining the location and magnitude of
the maximum saturation are the Lewis number, Le, and a parameter, B, which determines the
temperature variation of the equilibrium vapour concentration (B is roughly the latent heat of
vaporisation per vapour molecule divided by Boltzmann's constant). For vapour}gas mixtures with
Le'1, the maximum saturation occurs at the tube axis but for those with Le(1 it occurs near the
tube wall. The magnitude of the maximum saturation achieved increases rapidly with B. The
approach assumes that condensation on previously nucleated particles is negligible, and a condition
on the maximum nucleation rate for this to be so is derived. Predictions are compared with
numerical calculations for DBP vapour and for water vapour and very good agreement is found.
The approach is used in conjunction with Hale's scaled nucleation theory to determine the tube
wall}inlet temperature di!erence needed to achieve various nucleation rates for any speci"ed
vapour}gas mixture. This approach can be applied to many other two-dimensional systems where
simultaneous heat and mass transfer occur provided that the temperature and vapour concentration
can be expressed in the forms given above. Crown Copyright ( 2000/MOD. Published by Elsevier
Science Ltd. All rights reserved

NOMENCLATURE

A constant in continuum growth rate expression, RQ "A/R
$
, m2 s~1

a
i

constants in equation (5) (a
1
+1.4764).

B constant in equilibrium vapour concentration equation, c
%
(¹)"c

=
exp(!B/¹), K

D di!usivity of vapour in gas, m2 s~1
c vapour concentration, o

7
/o

c
8

vapour concentration on tube wall, c
8
"c

%
(¹

8
)

*c vapour concentration di!erence between inlet and tube wall
c
=

constant in equilibrium vapour concentration expression, c
%
(¹)"c

=
exp(!B/¹)

c
%
(¹) equilibrium vapour concentration at temperature ¹

c
p

speci"c heat capacity of vapour-gas mixture at constant pressure, J kg~1 K~1
c
p'

speci"c heat capacity of gas at constant pressure, J kg~1 K~1
c
p7

speci"c heat capacity of vapour at constant pressure, J kg~1 K~1
Cn condensation number, Cn"k/M¸Doc@

%
(¹)N

f (¹) temperature dependent part of exponential in equation (3)
J nucleation rate, m~3 s~1

J
1
(r) peak nucleation rate at radial position r, m~3 s~1
k thermal conductivity of vapour}gas mixture, W m~1 K~1

k
B

Boltzmann's constant (+1.38]10~23), J K~1
K pre-exponential factor in nucleation rate expression, equation (3), m~3 s~1
¸ latent heat of condensation of vapour, J kg~1

Le Lewis number k/Mc
1
oDN

m
1

mass of one vapour molecule, kg
m5

7
condensation rate on nucleated aerosol, kg m~3 s~1

M total mass condensed on nucleated aerosol at position z
1
, kg

n(R
$
, t) aerosol size distribution at time t, m~4
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N(r) total number nucleated per second at radial position r, m~2 s~1
N

505
total number of droplets nucleated in tube per second, s~1

N
065

number concentration at tube outlet, m~3
p
7%

(¹) equilibrium vapour pressure at temperature ¹, N m~2
r dimensionless radial coordinate, r@/r

0
r
0

tube radius, m
r
#

dimensionless radius at which S
.!9

from equation (9) equals S
.!9

from equation (11)
r@ radial distance from tube axis, m

R(r) approximate radial variation of h, i.e. h(r, z)+R(r)Z(z)
R

$
droplet radius, m

RQ droplet growth rate, m s~1
S vapour saturation
¹ temperature, K
¹

#
critical temperature of vapour, K

¹
1

temperature at location of peak nucleation rate, K
¹

8
tube wall temperature, K

*¹ temperature di!erence between inlet and wall, K
d¹ temperature di!erence given by equation (8), K

d¹
1

temperature di!erence given by equation (10), K
v(r) axial #ow velocity at dimensionless radial position r, m s~1
v
1

molecular volume, v
1
"m

1
/o

-
, m3

<
M

axial #ow velocity on tube axis, m s~1
z dimensionless axial distance, z"z@a/(r2

0
<

M
)

z
0

dimensionless axial position of maximum saturation
z
1

dimensionless axial position of maximum nucleation rate
z@ axial distance from tube inlet, m

Z(z) approximate axial variation of h, i.e. h(r, z)+R(r)Z(z)

Greek letters
a thermal di!usivity, a"k/(c

1
o), m2 s~1

b
i

parameters in equation (5); b
1
+2.704, b

2
+6.679

c surface tension, J m~2
e correction term to account for di!erence between position of max. S and of max. J
h dimensionless function in equations (4a) and (4b)
j minus the coe$cient of r2 in s

1
(r), j+1.8284

o total (vapour#gas) density, kg m~3
o
-

liquid density, kg m~3
o
7

vapour density, kg m~3
o
7%

(¹) equilibrium vapour density at temperature ¹, kg m~3
p
z

parameter in equation (16)
p
r

parameter describing radial variation of J
1
(r), i.e. J

1
(r)"J

1
(0) exp(!r2/2p2

3
)

s
i
(r) functions in equation (5)
) dimensionless parameter in equation (29) ()"2.35 in calculations)

1 . INTRODUCTION

Homogeneous nucleation is an important process in many environmental and industrial
systems. The laminar #ow di!usion chamber is a device used in the laboratory to examine
nucleation and condensation processes and there have been several experimental and
modelling studies of nucleation in this device published in recent years (see Nguyen et al.,
1987; Vohra and Heist, 1996; HaKmeri et al., 1996; Wilck et al., 1998, and references therein).
However, the modelling work has usually concentrated on a speci"c device and vapour,
with attributes such as tube dimensions, temperatures, and #ow rates "xed (or varying over
limited range).

Our interests are somewhat di!erent, being mainly concerned with industrial processes
where a wide range of thermal conditions may occur and a variety of vapours (often with
poorly known thermodynamic properties) are of interest. We want to explore the range of
conditions for nucleation to occur and, if it does, to estimate its location as well as the total
number of particles produced. Our approach, described in Section 2, is to develop simpli"ed
analytical approximations that allow these features, and their dependence on key para-
meters, to be identi"ed. In this paper we concentrate on the limit where vapour depletion by
condensation on particles is negligible, and we provide a condition for this approximation
to be valid. In Section 3, we compare results from our approximate treatment with
more accurate numerical calculations for dibutyl phtalate (DBP) and for water. We then
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demonstrate how our approach can provide insights into experimental results and predic-
tions for the behaviour of other vapours. We summarise our "ndings in the "nal section.

2 . FORMALISM

The equations describing the temperature ¹ and vapour concentration c during axisym-
metric laminar #ow of a vapour}gas mixture along a tube of radius r

0
are (Barrett and

Fissan, 1989):

c
p
ov

L¹
Lz@

#

1

r@
L
Lr@ A!kr@

L¹
Lr@B!(c

p7
!c

p'
)Do

Lc

Lr@
L¹
Lr@

"¸m5
7
, (1)

ov
Lc

Lz@
#

1

r@
L
Lr@A!Dor@

Lc

Lr@B"!(1!c)m5
7
, (2)

where m5
7

is the condensation rate per unit volume onto any aerosol present. Our key
assumption in this paper is that the terms involving m5

7
in equations (1) and (2) can be

ignored. Since condensation raises the temperature of the mixture (due to latent heat
release) and reduces the vapour concentration, ignoring condensation yields the highest
possible value for the vapour saturation S and therefore for the homogeneous nucleation
rate J(S,¹) which is assumed to have the form

J(S,¹)"K expA!
f (¹)

(ln S)2B. (3)

Equation (3) is the same as the classical expression, modi"ed by a factor 1/S (see Oxtoby,

1992), if we take K"J2c/(nm
1
)v

1
(co/m

1
)2/S and f (¹)"(16n/3)v2

1
c3/(k

B
¹)3, with the

molecular volume v
1
"m

1
/o

-
. For small c, the saturation is given in terms of the vapour

concentration and temperature by, S+c/c
%
(¹).

In all the following, we ignore the temperature variation of transport properties (k, D, and
viscosity k) and assume the total density of the vapour}gas mixture #owing along the tube is
constant. Then we can use the parabolic form for the velocity pro"le, v(r)"<

M
(1!(r@/r

0
)2).

Provided the boundary conditions are suitable (e.g. constant vapour concentration at the
wall), equation (2) can be solved analytically by separation of variables. This is also true of
equation (1), if we ignore the "nal term on the left-hand side, which represents heat transfer
by the di!using vapour. In many circumstances, the vapour concentration is so small that
this term can be neglected; however, it was found to be signi"cant in calculations for water
vapour at moderate temperatures (Barrett and Clement, 1986). Ignoring this term, the
analytical solutions can be conveniently written in terms of the dimensionless variables
r"r@/r

0
and z"z@a/(r2

0
<

M
),

¹(r, z)"¹
8
#*¹h(r, z), (4a)

c(r, z)"c
8
#*ch(r, z/Le), (4b)

where ¹
8

is the (constant) wall temperature and *¹ is the di!erence between the inlet and
wall temperatures (and similarly for c

8
and *c) and Le"a/D is the Lewis number (the ratio

of thermal di!usivity to vapour}gas di!usion coe$cient, D). The h(r, z) is given by

h(r, z)"
=
+
i/1

a
i
s
i
(r) exp(!b2

i
z), (5)

where the a
i
and b

i
are known constants and the s

i
are functions that can be expressed as

in"nite series in powers of r2. Equation (5) is the well-known Nusselt}Graetz solution
(Nusselt, 1910, but see also Ingham, 1975). We now assume that c is small, so S+c/c

%
(¹),
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and that c
%
(¹) has the form c

%
(¹)"c

=
exp(!B/¹) where c

=
and B are constants. Then,

S(r, z)"
c

c
%
(¹)

"

[c
8
#*ch(r, z/Le)]

c
=

expA
B

¹
8
#*¹h(r, z)B. (6)

As discussed previously (Baldwin and Barrett, 1998; see also Larrode et al., 1998) we can use
equation (6) to "nd the approximate value of the maximum saturation achieved along any
streamline (i.e. at "xed r). For Le"1, only h(r, z) appears in equation (6) and we can set
dS/dh"0 to "nd the position of the maximum of S. This gives a quadratic for h, the
relevant solution of which is given to a very good approximation by d¹,*¹.h

.!9
"

(¹2
8
!B*¹c

8
/*c)/(B!2¹

8
)+¹2

8
/(B!2¹

8
). The "nal form follows if c

8
;*c, which

will often be the case. The physical interpretation of d¹ is that it is the temperature
di!erence between the wall and the position of the maximum saturation.

To obtain simple results in the case LeO1, we assume that h(r, z) is given by the "rst term
in the series, equation (5). Since b

1
+2.704 and b

2
+6.679, this should be a reasonable

approximation provided z is greater than about 0.05. Then, writing Z(z)"exp(!b2
1
z) and

R(r)"a
1
s
1
(r), we have h(r, z)"RZ and h(r, z/Le)"RZ1@L%. Setting LS/LZ"0 at z"z

0
gives the following equation for Z(z

0
):

A
dc

c
8
#dcB

1

Z(z
0
)Le

!

B*¹R(r)

[¹
8
#*¹R(r)Z(z

0
)]2

"0, (7)

where dc"*ch(r, z
0
/Le) is the concentration di!erence between the position of maximum

saturation and the wall. Assuming dc<c
8

(so the "rst term, in large brackets, can be
replaced by unity), equation (7) has a solution very similar to that found before:

d¹,*¹.R(r)Z(z
0
)+

¹2
8

BLe!2¹
8

. (8)

According to equation (8), as we vary the radial coordinate, r, the axial position of the
maximum saturation varies, but the temperature at the maximum saturation, ¹

8
#d¹, is

independent of radial position. Using the known values of a
1
(+1.4764) and s

1
(r), equation

(8) allows us to determine Z(z
0
) and hence the axial location of the maximum saturation,

z
0
"!ln(Z)/b2

1
. From equation (6), we obtain the maximum saturation at a given radial

position in terms of Z or R;

S
.!9

"

d¹
*¹

expA
B

¹
8
#d¹

!

B

¹
8
#*¹BZ(L%~1~1)

"A
d¹
*¹B

L%~1

expA
B

¹
8
#d¹

!

B

¹
8
#*¹BR(1~L%~1), (9)

where we have assumed that the inlet is saturated so *c+c
=

exp(!B/[¹
8
#*¹]). The

second form follows by using equation (8). From equations (8) and (9), we predict that
S
.!9

will be large if B is large, and that it increases with increasing Le. Also, since
R(r)"a

1
s
1
(r) decreases as r increases, equation (9) shows that if Le'1 then S

.!9
is greatest

at the tube axis, but if Le(1, S
.!9

increases as r increases towards 1. However, near the
wall, the above treatment breaks down since it is no longer su$cient to consider only the
"rst term in the series expansion, equation (5). Instead, we use the boundary layer solution
for h(r, z), derived by LeH ve( que (1928), which is valid for small z. Near the wall (i.e. if
(1!r)/z1@3;1 in addition to z;1), this solution is approximately h(r, z)+M31@3/!(1/3)N
(1!r)/z1@3, where !(x) is the gamma function. Then, putting R(r)"1!r and
Z(z)"31@3/M!(1/3)z1@3N, we have h(r, z)"R(r)Z(z) and h(r, z/Le)"R(r)Z(z)Le1@3. Setting
LS/LZ"0 gives an equation with (approximate) solution for d¹ identical to the Le"1
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case, except that *c is replaced by *cLe1@3,

d¹
1
+

¹2
8
!Bc

8
*¹/(*cLe1@3)

B!2¹
8

(1!r);1. (10)

The maximum saturation in this case is

S
.!9

"C1#
c
8
*¹

d¹
1
*cLe1@3DLe1@3

d¹
1

*¹

expA
B

¹
8
#d¹

1

!

B

¹
8
#*¹B (1!r);1. (11)

Equations (10) and (11) simplify if we set c
8
"0, as done in the derivation of equations (8)

and (9). However, we "nd that the terms involving c
8

are not negligible for water at
temperatures of interest (see next section).

The nucleation rate depends on temperature and saturation, both of which are varying in
the tube, consequently the maximum nucleation rate will not in general coincide with the
maximum saturation. From equation (3), ignoring the much weaker dependence of the
prefactor K with ¹ and S, the condition L(ln J)/Lz"0 can be written as

!f (¹)

(ln S)2 C
f @ (¹)

f (¹)

L¹
Lz

!

2

ln S

L(ln S)

Lz D"0. (12)

To estimate the value of Z(z
1
) at which this equation is satis"ed, we write

Z(z
1
)"Z(z

0
)(1#e), (13)

where e is assumed to be small. Expanding equation (12) to "rst order in e and making some
other reasonable approximations, we can obtain an expression for e. Details are given in the
appendix. Near the tube axis, the result is

e"!

1

2
Le ln(S

.!9
)d¹

f @ (¹
8
#d¹)

f (¹
8
#d¹)

. (14)

where S
.!9

is given by equation (9) and d¹ by equation (8). The peak nucleation rate, J
1

is
calculated from equation (3) using a temperature ¹

1
"¹

8
#d¹(1#e) and saturation

S
1
"S

.!9
. Near the tube walls,

e"!

1

2
ln(S

.!9
)d¹

1

f @ (¹
8
#d¹

1
)

f (¹
8
#d¹

1
)
, (15)

where S
.!9

is given by equation (11), and d¹
1

by equation (10).
To estimate the width of the nucleation peak, and therefore the number of particles

nucleated, we assume that, for "xed r, J(r, z) can be represented by a Guassian around J
1
, i.e.

J(r, z)"J
1
(r) expA!

(z!z
1
)2

2p2
z
B. (16)

Expressions for p
z

are found by equating the second derivative with respect to z of
equations (3) and (16) at the nucleation (actually saturation) peak. Details are given in the
appendix. The results are:

Near the tube axis:

p
z
+C

(ln S
.!9

)3Le

2f (¹) D
1@2 1

b2
1

. (17)
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Near the tube wall:

p
z
+3z

0C
(ln S

.!9
)3

2f (¹) D
1@2

"9A
(1!r)*¹

!(1/3)d¹
1
B
3

C
(ln S

.!9
)3

2f (¹) D
1@2

, (18)

where the "nal form follows by substituting for z
0

using the relation d¹
1
,*¹.R(r)Z(z

0
),

with the appropriate forms of R and Z near the wall.
The total number of particles nucleated per second at a given tube radius can be found

from

N(r)"P
=

0

J(r, z) dz@"
r2
0
<

M
a P

=

0

J(r, z) dz+
r2
0
<

M
a

J
1
(r)J2np

z
, (19)

where we have assumed that the tube length is su$cient to ensure that all nucleation takes
place before the end. To "nd the total number of particles #owing along the tube (integrated
over tube radius), we need to consider the radial variation of J

1
. The cases Le'1 and

Le(1 will be treated separately.
For Le'1, we can represent J

1
(r) as a Gaussian about r"0, i.e. J

1
(r)"J

1
(0)

exp(!r2/2p2
3
), where p

3
is found by calculating the second derivative of ln J from equation

(3). The result is (see the appendix)

p
r
+C

(ln S)3

2f (¹) D
1@2 1

J2j(1!Le~1)
, (20)

where j+1.8284 is minus the coe$cient of the r2 term in s
1
(r). Using equation (19) we then

have for the total number of particles #owing down the tube per second,

N
505
"2nP

r0

0

r@N(r) dr@+
r4
0
<

M
a

J
1
(0)(2n)3@2p

z
p2
3
. (21)

For Le(1, nucleation occurs near the wall, and we assume that the maximum rate is
independent of r for r greater than some value r

#
. We estimate r

#
by equating the value of

S
.!9

for equation (9), valid near the axis, to that from equation (11), valid near the wall.
Using Z"d¹/(*¹a

1
s
1
(r
#
)) (from equation (8)), we "nd,

s
1
(r
#
)"

d¹
a
1
*¹A C1#

c
8
*¹

d¹
1
*cLe1@3DLe1@3

]
d¹

1
d¹

expC
B

¹
8
#d¹

1

!

B

¹
8
#d¹D B

L%@(L%~1)
. (22)

As a "rst approximation, we set s
1
(r
#
)"1!r

#
near the wall.

To evaluate N
505

, we assume that J
1
(r) is constant (with its value calculated at

¹"¹
8
#d¹

1
(1#e) and S"S

.!9
given by equation (11)) for r

#
(r(1, and zero for

r(r
#
. Then,

N
505
"2nr2

0P
1

0

rN(r) dr+(2n)3@2
r4
0
<

M
a

J
1
(1)P

1

r#

p
z
r dr

"9(2n)3@2
r4
0
<

M
a

J
1
(1)A

*¹

!(1/3)d¹
1
B

3

A
ln S

.!9
2f (¹) B

1@2

]G
1

4
(1!r

#
)4!

1

5
(1!r

#
)5H, (23)
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where we have used equation (18) for p
z
and performed the integration with respect to r. By

J
1
(1) we mean the peak nucleation rate near the wall, i.e. calculated at ¹

1
"¹

8
#

d¹
1
(1#e) and S"S

.!9
with e given by equation (15), d¹

1
by equation (10) and S

.!9
by

equation (11).
It is interesting to note that, for both Le(1 and Le'1, the maximum saturation and

nucleation rate in the tube are independent of tube radius, r
0
, and #ow velocity <

M
.

Furthermore, since N
505

is proportional to <
M

r4
0
, the number concentration at the outlet

(equal to N
505

divided by the volumetric #ow rate, n<
M

r2
0
/2) is independent of #ow rate and

proportional to the tube cross-sectional area.
The key assumption in our approach is that vapour condensation on previously nu-

cleated particles is not su$cient to a!ect the nucleation of new particles. We can obtain an
approximate condition for this assumption to be valid by adapting a method used pre-
viously to estimate the number of particles formed in a nucleation burst (Barrett and
Clement, 1991). Consider a streamline parallel to the tube axis at (dimensionless) radial
position r. The total mass per unit volume condensed on particles at dimensional
position z@

1
(corresponding to the position of maximum nucleation in the absence of

condensation) is

M"P
z
@
1

0

m5
7

dz@
v(r)

"

4np
-
r2
0

a(1!r2)P
z1

0

dzP
=

0

dR
$

R2
$
RQ n(R

$
, t), (24)

where R
$

is the droplet radius and n(R
$
, t) is the size distribution of the nucleated aerosol.

We can estimate M by using the size distribution ignoring the e!ect of vapour depletion in
this equation. If R

$
(z,z( ) represents the radius at (dimensionless) position z of a droplet

nucleated at (dimensionless) position z( , then the integral over R
$

can be transformed into an
integral over z( ,

M"

4no
-
r4
0

a2(1!r2)2P
z1

0

dzP
z

0

dz( R
$
(z,z( )2RQ J(r,z( ). (25)

We now use the Gaussian expression, equation (16), for J(r, z) and assume continuum

growth with RQ "A/R
$
, so R

$
(z,z( )"J2Ar2

0
(z!z( )/(a[1!r2]). Substituting these expres-

sions into equation (25) and performing the integrals (most easily by "rst reversing the order
of integration), we obtain

M"

27@4n!(1/4)

3

o
-
r5
0
A3@2p5@2

z
a5@2(1!r2)5@2

J
1
(r), (26)

where we have assumed that the nucleation peak occurs well within the tube, i.e. z
1
<p

z
, so

that we can replace the lower limit of the integral over z( by !R. We have also used the
recurrence relation for the gamma function, !(x#1)"x!(x).

This condensation reduces the vapour saturation both by removing vapour and by
raising the temperature (due to the release of latent heat). The change in saturation caused is
approximately (Barrett and Clement, 1991) !M(1#S

.!9
Le/Cn)/[oc

%
(¹

1
)], where Cn

is the condensation number (Clement, 1985) giving the ratio of conductive heat transfer
to latent heat carried by the mass current. The change in saturation needed to reduce
the nucleation rate by a factor e from its value at the peak is approximately
!S

.!9
[ln S

.!9
]3/2 f (¹

1
) and we require the change in S caused by the condensation M to

be less than this for our approach to be valid. This can be rearranged into a condition on the
peak nucleation rate J

1
(r) for vapour condensation to be negligible,

J
1
(r);

3

211@4n!(1/4)

(ln S
.!9

)3

f (¹
1
)

a5@2
A3@2A

o
7

o
-
B C

(1!r2)5@2

1#S
.!9

Le/CnD
1

p5@2
z

r5
0

. (27)
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Fig. 1. Variation of saturation with dimensionless radial position at three dimensionless axial
positions for DBP in air with ¹

8
"273 K, *¹"90 K. Also shown by the solid line is the locus of

maximum saturations and by the dotted line, our approximation, equation (9), to it.

Rather than consider this general condition further, we restrict our attention to substances
with Le'1 and Cn<1 (e.g. large organic molecules with low vapour densities and latent
heats). For the growth rate constant we use A"Doc

%
(¹

1
)(S

.!9
!1)/o

-
. We also assume

that S
.!9

<1, but S
.!9

Le/Cn;1. Then, on the tube axis (r"0), equation (27) becomes

J
1
(0);

3b5
1

23@2n!(1/4)C
Le f (¹

1
)

(ln S
.!9

)3D
1@4

a A
o
-

S
.!9

o
7%

(¹
1
)B

1@2 1

r5
0

. (28)

The right-hand side of this inequality decreases with increasing temperature, but the main
dependence is the r~5

0
variation with tube radius.

3 . RESULTS

To assess the accuracy of the approximate approach described in the previous section, we
need accurate solutions of equations (1) and (2). Although, for m5

7
"0, an analytical

solutions is available (i.e. equation (5)) provided we ignore the "nal term on the right in
equation (1), a large number of terms in the in"nite series are needed near the tube entrance.
We therefore used a numerical solution of these equations, obtained by the method of
orthogonal collocation. This method is described in detail by Finlayson (1972) and its
application to laminar tube #ow is discussed by Barrett and Fissan (1989). The accuracy of
the method increases with the number of quadrature points used; Finlayson tabulates
values for up to 6 quadrature points, the higher order quadrature schemes were obtained
from the recurrence relation between polynomials orthogonal to weighting function
r(1!r2), using the subroutine GAUCOF (Press et al., 1992). We used 8 or 10 quadrature
points in the calculations presented here; values for S and J agreed to at least 2 signi"cant
"gures with those obtained using lower-order quadratures. We performed calculations for
DBP in air (Le+5) and for water in air (Le+0.85). The thermophysical data for DBP was
taken from Nguyen et al. (1987) and that for water using appropriate "ts to the data in Lide
(1995).

Figure 1 shows the variation of saturation with scaled radius for DBP at three dimension-
less distances along the tube, obtained from the numerical solution. The wall temperature
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Fig. 2. Variation of peak nucleation rate on the tube axis, J
1
(0), with inlet}wall temperature

di!erence, *¹ for DBP in air. The solid lines show values from the numerical solution and the
dashed lines show our analytical approximation. Also shown by the dotted lines are the nucleation

rates at the position of maximum saturation.

for the case shown is 273 K and the inlet temperature is 363 K. The solid line shows the
locus of maximum saturations achieved at any radial distance. Also shown by the dotted
line is our approximation to this maximum S curve, from equation (9) (for the approximate
calculations we used a simple "t to s

1
(r); s

1
(r)+0.65 r4!1.63 r2#1 which is accurate to

within 3% for r(0.9). As expected, the maximum saturation increases as the tube axis is
approached. Note also that near the wall, the maximum saturation achieved does not tend
to zero (as predicted by equation (9)), but instead levels o! at a value close to that predicted
by equation (11) (+1600). Figure 2 shows the maximum nucleation rate on the tube axis
(r"0), as a function of inlet}wall temperature di!erence, and also the nucleation rate at the
position of maximum saturation. The latter is between a half and a quarter of the former
and the peak saturation occurs a dimensionless distance of between 0.1 to 0.3 after the peak
nucleation rate (the peak nucleation rates typically occur at a dimensionless distance of
between 0.3 and 0.5). Also shown is the peak nucleation rate J

1
(0) calculated by the

approximate approach, i.e. at ¹
1
"¹

8
#d¹(1#e) and S

1
"S

.!9
where d¹ is given by

equation (8), e by equation (17) and S
.!9

by equation (9) with R in this equation having its
value at r"0, i.e. R"a

1
. The simple approximation very accurately reproduces the

numerical results, except at the highest nucleation rates where it underestimates the rate.
However, we would not expect the assumption of negligible vapour depletion by growth to
be valid at very high nucleation rates (see below). Figure 3 shows the total number of
particles (scaled by r4

0
<

M
/a) emerging from the tube per second, calculated by performing

the integrals over r and z numerically, and from the analytical expression, equation (21).
Once again, the two approaches agree very well, with di!erences being less than 30% over
the range shown. Also shown in Fig. 3 are values calculated for n-nonane in Helium, using
the thermophysical data tabulated by Rudek et al. (1996). Agreement between the two
approaches is not as impressive in this case, with approximate values exceeding accurate
ones by a factor of about 2. Nevertheless it is quite acceptable, given the large uncertainties
in nucleation theories.

We can estimate the maximum nucleation rate for our approach to be valid from
inequality (28). We "nd the various terms in this expression vary rather weakly with
temperature (the main variation is the increase in equilibrium vapour density with increas-
ing temperature, and this is compensated for to some extent by the decrease in S

.!9
as

¹ increases); writing the inequality J
1
(0);i/r5

0
, we "nd that i is between 0.5 and 5 for the
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Fig. 3. Total number of particles #owing out of a long tube per second, scaled by r4
0
<

M
/a, as

a function of inlet}wall temperature di!erence. The solid lines are from the numerical solution and
the dashed lines are from our analytical approximation.

Fig. 4. Variation of saturation with dimensionless radial position at three dimensionless axial
positions for water in air with ¹

8
"273 K, *¹"70 K. Also shown by the solid line is the locus

of maximum saturations. The dotted curve shows S
.!9

from equation (9) and the horizontal dotted
line shows S

.!9
from equation (11). The dimensionless radius at which these two dotted lines

intersect is r
#
.

conditions we have investigated. Consequently, narrow tubes are required if quenching of
nucleation by condensation is to be avoided at moderate nucleation rates (e.g. a nucleation
rate of 1012 m~3 s~1 requires a tube radius of less than about 4 mm to avoid this
quenching).

Figures 4}6 show some results for water. Figure 4 shows that, as expected, the maximum
saturation increases with r, reaching a plateau near the wall. Equation (9) predicts that
S
.!9

rises to in"nity as rP1 for Le(1, whereas equation (11) predicts a constant value;
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Fig. 5. Variation of peak nucleation rate near the tube wall, J
1
(1), with inlet}wall temperature

di!erence, *¹ for water in air. The solid lines show values from the numerical solution evaluated at
r"0.95, and the dashed lines show our analytical approximation. Also, shown by the dotted lines

are the nucleation rates at the position of maximum saturation.

Fig. 6. Total number of water droplets #owing out of a long tube per second, scaled by r4
0
<

M
/a, as

a function of inlet}wall temperature di!erence, for ¹
8
"273 K. The solid line is from the numerical

solution and the dashed line is from our analytical approximation. The dotted line shows the e!ect of
including the `cross-terma (last term on the left of equation (1)) in the numerical solution.

these two approximations intersect at r
#
, given by equation (22). We note that equation (9)

signi"cantly underestimates the maximum saturation near the tube axis: we attribute this to
the fact that c

8
has been set equal to zero in the derivation of this equation. If we set c

8
"0

in equations (10) and (11), we obtain a value S
.!9

+3.9, signi"cantly less than the value
S
.!9

+4.2 predicted if these terms are included. Figure 5 shows the maximum nucleation
rate near the wall (actually, at r"0.95) and approximate values J

1
(1)"J(S

.!9
, ¹

1
)
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Fig. 7. Variation of particle number concentrations, N
065

, with saturator (i.e. inlet) temperature for
two wall temperatures. The symbols show the experimental measurements taken from Fig. 1 of
Wilck et al. and the solid and dashed lines show the numerical and approximate analytical
predictions, respectively, using their thermophysical data. The dot}dashed and dotted lines show the
numerical and analytical predictions using the data used by Nguyen et al. For these calculations,
the nucleation rate was given by the classical expression (without the 1/S factor), enhanced by a

factor 104.

calculated using equation (11) for S
.!9

and equations (10) and (15) to "nd ¹
1
"¹

8
#

d¹
1
(1#e). Agreement between the numerical and approximate values is very good. Once

again, if the terms in equations (10) and (11) involving c
8

were ignored, agreement would be
much poorer, with approximate predictions underestimating the nucleation rate by a factor
of 100 or more. It is interesting to observe in Fig. 5 that, for "xed *¹, J

1
(1) decreases as

¹
8

is increased whereas for DBP, Fig. 2 shows that J
1
(0) increases with increasing ¹

8
. Also

shown in Fig. 5 is the nucleation rate at the position of maximum saturation, which is seen
to be signi"cantly less than the maximum rate. Figure 6 shows values of N

505
(scaled by

r4
0
<

M
/a) for water with ¹

8
"273 K, calculated numerically and from the approximate

equation (23). It is notable that the two approaches agree very well, despite the crudity of
the approximations involved in the estimate, equation (23). However, also shown in Fig. 6 is
the e!ect of including the `cross terma (last term on the left in equation (1)) in our numerical
treatment. As found previously (Barrett and Clement, 1986) this term signi"cantly reduces
the saturations, and hence nucleation rates, achieved for water (for low vapour pressure
organic vapours, its e!ect is negligible). Clearly, an accurate estimate of the actual number
of water droplets nucleated can only be obtained by taking this term into account.

In principle, we can derive a condition from equation (27) for our approximation to be
valid for water, analogous to equation (28) for DBP. However, we have to choose a radius at
which the inequality is applied and the right-hand side of equation (27) diverges as rP1
(due to the vanishing of p

z
, equation (18), in this limit). Furthermore, particle removal by

thermophoresis and di!usiophoresis is likely to be signi"cant near the tube wall due to the
large temperature and concentration gradients there. For these reasons, we do not pursue
a more detailed analysis of the quenching condition for substances with Le(1.

We now consider the application of our approach to making general predictions in other
cases. First we consider the experiments of HaKmeri and Kulmala (1996), which have been
the subject of a recent very detailed modelling study by Wilck et al. (1998). Figure 7 shows
a comparison between the experimental results (taken from Fig. 1 of Wilck et al., 1998) and
various calculations for the number concentration at the tube outlet, given by N

505
divided
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by the volumetric #ow rate, i.e. N
065

"2N
505

/Mn<
M

r2
0
N. Note that in this "gure only, we have

used classical theory (without the 1/S factor) enhanced by a factor 104 (i.e. equation (3) with
K"104J2c/(nm

1
)v

1
(co/m

1
)2), as used by Wilck et al. The solid lines show our numerical

calculations using these authors' data and so can be compared with the dotted lines in their
Fig. 1. Our values are slightly higher than their ones (by up to about 20%, the di!erence
increasing with saturator temperature): we attribute this to variations of thermal properties
and density (and hence velocity pro"le) with temperature which they model but we do not.
The dashed lines show the results of our approximate treatment, with B given by the
gradient of the best-"t straight line when ln p

7%
is plotted against 1/¹ over the temperature

range of interest. This gives B"12,368 K for the temperature range 275}345 and
B"11,553 K for the range 295}385 K. The dashed lines have di!erent slopes from the solid
ones, due to the use of constant values of B; however, agreement between the two
approaches is still good. Also, shown are numerical values (dot}dashed lines) and approx-
imate values (dotted lines) using the thermophysical data of Nguyen et al. (1987), with
B"11,497 K. This lower value of B leads to much lower number concentrations at the
lower wall temperature. Since the saturation varies between about 400 and 2000 for the
conditions shown, it is clear that including the 1/S factor would make agreement between
theory and experiment even worse. However, from a theoretical point of view, it is more
satisfactory to include this factor (see Oxtoby, 1992).

Other aspects of the numerical results of Wilck et al. (1998) can also be explained by our
treatment. For example, equation (8) predicts that the temperature di!erence between the
position of peak nucleation and the wall is independent of the inlet temperature, in line with
Fig. 5 of Wilck et al. (1998) (we attribute the rise in temperature at the highest nucleation
rates to vapour depletion e!ects). Equation (8) gives d¹+1.8 K, which is somewhat smaller
than the value of about 2.7 K found by Wilck et al. (1998). However, including the
e correction gives better agreement; d¹(1#e)+2.4 K. We can also understand the sensi-
tivities to material properties observed by Wilck et al. (1998). Figure 7 of Wilck et al. shows
that using a smaller value of vapour}gas di!usivity (i.e. a larger value for Le) gave higher
particle production rates, whereas using a di!erent vapour pressure equation, correspond-
ing to a smaller value of B, resulted in smaller predicted nucleation. This agrees with the
predictions of equation (9): see our comments after that equation. Wilck et al. found that
quenching becomes important for nucleation rates somewhere between 1011 and
1012 m~3 s~1, which is consistent with inequality (28), the right-hand side of which is about
5]1012 m~3 s~1 for this (6 mm) diameter tube.

Finally, we examine the use of our approach to make predictions about the conditions for
nucleation to occur in laminar tube #ow. Instead of using classical theory (which requires
the liquid surface tension and density as functions of temperature), we use a correlation
proposed by Hale (1988)

ln S+0.53)3@2C1#
ln(10~6J)

144 D A
¹

#
¹

!1B
3@2

, (29)

which involves two temperature-independent parameters;¹
#
, the critical temperature of the

vapour and ), a dimensionless parameter that can be identi"ed as the e!ective excess
surface entropy (in units of the Boltzmann constant) per molecule in the cluster. Equation
(29) gives the saturation S needed to achieve a nucleation rate J at temperature ¹. Hale
showed that experimental data for nonane, octane and n-butylbenzine was well represented
by this equation with )"2.35. Other substances are better represented with lower values of
) (e.g. for water )+1.5).

For given values of B/¹
#

and Le, we use equation (8) to determine ¹"¹
8
#d¹

and then equation (29) to "nd the value of S"S
.!9

required at this temperature to
achieve a speci"ed nucleation rate. Finally, we determine (from equation (9), by iteration)
the inlet}wall temperature di!erence *¹/¹

#
needed to give this maximum saturation on the

tube axis (we restrict our attention to substances with Le'1). Figure 8 shows some results
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Fig. 8. The solid lines represent the minimum value of *¹/¹
#

for a peak nucleation rate,
J
1
(0)"106 m~3 s~1 as a function of the parameter B/¹

#
in the equilibrium vapour concentration

equation. The dashed lines are for J
1
(0)"1018 m~3 s~1. In both cases, ¹

8
"0.5¹

#
and values are

for Le"5 (upper line), Le"7.5 (middle line) and Le"10 (lower line). The dotted line shows the
e!ect of reducing ¹

8
to 0.4¹

#
(for Le"5, and J

1
(0)"1018 m~3 s~1). The triangles show the values

of *¹/¹
#

needed to achieve a peak nucleation rate of 106 m~3 s~1 using the experimental values of
Le and B/¹

#
for heptane (H), octane (O), nonane (N), and decane (D), assuming ¹

8
"0.5 ¹

#
.

from this procedure, assuming )"2.35. For a given value of Le, the lines represent the
minimum value of *¹/¹

#
needed to achieve the speci"ed nucleation rate, J, as a function of

B/¹
#
. The four triangles refer to heptane (H), octane (O), nonane (N) and decane (D) and

show the values of *¹/¹
#
needed to achieve a nucleation rate of 106 m~3 s~1 for the values

of Le and B/¹
#

applicable to these substances (data for these n-alkanes were taken from
Rudek et al., 1996). Figure 8 can be used to predict the experimental conditions needed to
achieve the speci"ed nucleation rates for any substance (for which B, Le, and ¹

#
are known).

Since the range of B/¹
#

and Le shown cover expected values for most organic molecules
used in laboratory studies, and since values of *¹ of between 0.01¹

#
and 0.05¹

#
should be

readily attainable, it also supports the claim (Vohra and Heist, 1996) that the laminar #ow
di!usion chamber is a useful device for investigating homogeneous nucleation for a variety
of substances and nucleation rates. However, the higher nucleation rate, 1018 m~3 s~1, is
unlikely to be achieved in practice due to quenching by condensation on nucleated droplets
(i.e. inequality (28) will be violated).

4 . CONCLUSIONS

We have presented an approximate method of determining the magnitude and location of
the nucleation `pulsea that may occur during the laminar #ow of hot vapour}gas along
a cooled tube. The key parameters are the Lewis number, Le, and the parameter B in the
vapour concentration (or vapour pressure) expression. According to the Clausius}
Clapeyron equation, B"m

1
¸/k

B
, i.e. the latent heat per molecule in units of Boltzmann's

constant. More generally, B can be de"ned as the gradient of the best-"t straight line when
ln p

7%
is plotted against !1/¹. For Le'1, the maximum saturation occurs on the tube

axis but for Le(1, it occurs near the tube wall (and also very near the tube entrance). The
magnitude of B in#uences the magnitude of the maximum saturation achieved (S

.!9
increases with B). Whether signi"cant nucleation is predicted to occur at this saturation
depends on the nucleation theory used. No theory is entirely satisfactory for all substances
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and temperatures (Oxtoby, 1992): in this paper we have performed calculations using
classical theory and also using the correlation, equation (29), proposed by Hale (1988).
Using a di!erent nucleation theory will lead to di!erent values of p

r
and p

z
as well as

changing J
1
; however we expect the changes in the p@s to be rather modest (especially since

classical theory gives a good representation of the saturation dependence of the nucleation
rate) so the classical theory values can still be used. Thus we expect our approximation for
N

505
, equation (21), to be valid even for nucleation rates that are not of the general form

given by equation (3) (note that equation (29) is not of this form). The advantage of Hale's
correlation is that it involves only two temperature-independent parameters. However, it
should be mentioned that equation (29) is not supported by all experimental data. Kane and
El-Shall (1996) found for three glycols that, although plots of ln S vs (¹

#
/¹!1)3@2 were

almost linear, the lines did not pass through the origin and their gradients predicted smaller
values (about 1) for ). Furthermore, when we plotted the experimental data for DBP from
HaK meri and Kulmala (1996) in this way, we found little evidence of a linear relation and the
best "t straight lines yielded values of ) greater than 3, signi"cantly larger than the range
1.5}2.35 proposed by Hale.

Our approximate approach yields good agreement with our accurate calculations,
although it should be noted that there are several approximations common to both our
analytical and numerical results. The #ow is assumed to be laminar (Reynolds number, Re,
less than about 2000) and fully developed (requiring a length beyond the tube entrance of
the order of 0.07r

0
Re). Moreover, we have ignored the variation of transport properties and

gas density with temperature. We have not carried out a detailed analysis of the errors
involved in these approximations, although calculations using properties evaluated at
di!erent temperatures indicate that they are small (a few tens of percent in N

505
) for the

conditions considered here. The reasonable agreement between our numerical results in
Fig. 7 and those of Wilck et al. (1998), whose modelling included temperature variations and
non-parabolic velocity pro"les, supports this estimate. We have also ignored di!usion in the
axial direction; however the estimates of Vohra and Heist (1996) indicate that this is valid
for #ow rates typical of laminar di!usion chambers. Other e!ects not included here, such as
thermal di!usion, the Dufour e!ect and non-ideal gas e!ects have been found to be
signi"cant in interpreting thermal di!usion chamber experiments (Fisk and Katz, 1996) and
so may also need to be considered in the interpretation of laminar #ow di!usion chamber
experiments. It may be possible to incorporate these e!ects (approximately) in our ap-
proach, but we have not investigated this.

To obtain analytical formulae, we have made several additional approximations, the key
one being that quenching of nucleation due to vapour consumption by growing droplets
can be neglected. A condition has been given for this to be valid (equation (27)), which shows
that small diameter tubes are needed if quenching is to be avoided at signi"cant nucleation
rates. We have also assumed that the axial displacement at the position of maximum
nucleation, z

1
, is su$ciently large that simpli"ed forms of the analytical temperature

and concentration pro"les can be used. This approximation is justi"ed for the results
presented here, but should be checked in other circumstances. Finally, for Le'1, we have
assumed that the vapour concentration at the wall is negligible. This is reasonable for DBP,
with its large value of B, but may not be valid for other vapours*we suspect that the poorer
agreement between approximate and numerical results for nonane (see Fig. 3) is due to this
approximation.

Our approximate treatment yields reasonable agreement with the accurate calculations
of Wilck et al. (1998) at the two wall temperatures considered (see Fig. 7). Although we have
not performed comparisons at other wall temperatures, we would expect agreement to be
similarly good (provided appropriate values of B are used). Our results support the
conclusion of these and other authors that a large temperature-dependent correction
factor is needed to obtain agreement between theoretical and experimental nucleation rates
for DBP. We should add, however, that we would not in general recommend using our
approach for detailed comparison between theory and laboratory experiment, due to the
approximations discussed above. As noted in the introduction, our principle aim is to make
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general predictions about whether nucleation will occur for vapours with poorly known
thermal properties, and to identify those properties of greatest importance for predicting
nucleation behaviour.

One other aspect of our approach for Le'1 is worth mentioning. We have assumed that
the tube is long enough to include the nucleation peak on the tube axis. The saturation peak
occurs at a dimensional distance z@

0
"r2

0
<

M
ln(*¹a

1
/d¹)/(ab2

1
) which, for<

M
not too large

(to ensure laminar #ow) is likely to be of the order of centimeters for tube radii of a few
millimetres, but may be several metres for tube radii of a few centimetres. The nucleation
peak occurs before the saturation peak, but will be at a comparable distance. It is therefore
possible that nucleation will occur "rst near the wall (if equations (10) and (11) predict
suitable conditions) but that the tube is too short for it to occur near the axis.

For water, our approximate approach gives accurate estimates of the saturation and
nucleation rate near the wall, although there are several aspects of our modelling of water
nucleation that should be improved. The assumption that the vapour concentration c is
small (implicit in the approximation S+c/c

%
(¹)) is not valid for water at the moderate to

high temperatures we considered, and we have shown that the `cross-terma in equation (1),
which is not currently included in our approximate treatment, has a signi"cant e!ect on
predicted nucleation rates. Furthermore, our experience with modelling water nucleation in
other circumstances (Barrett and Clement, 1991; Barrett, 1999) leads us to suspect that our
basic assumption that the e!ects of condensation can be ignored is rarely valid for water.
Finally, as we have noted, thermophoresis and di!usiophoresis are expected to have
a signi"cant e!ect on the behaviour of aerosol nucleated near the wall.

Although we have only considered laminar tube #ow in this paper, our approximation
method is applicable to many other two-dimensional situations where nucleation may
occur. The basic requirement is that the temperature and vapour concentration at position
(r, z) can be approximated by M¹

8
#*¹R(r)Z(z)N and *cR(r)F(Z(z)), respectively, with

known forms of R, Z, and F. Thus, the approach could be applied to turbulent boundary
layers near surfaces and to axisymmetric and planar jets, using standard correlations for the
temperature and concentration in these situations. It should also be possible to develop the
approach to deal with time dependent and higher-dimensional problems. In all cases,
conditions on the nucleation rate, analogous to inequality (27), can be derived for the
validity of the basic assumption that vapour depletion by condensation is negligible. For
cases where this condition is violated, a general approach has been described recently
(Barrett, 2000). We are currently investigating the application of this approach to laminar
tube #ow.

REFERENCES

Baldwin, T. J. and Barrett, J. C. (1998) J. Aerosol Sci. 29, S83.
Barrett, J. C. (2000) J. Aerosol Sci. 31 (in press).
Barrett, J. C. and Clement, C. F. (1986) J. Aerosol Sci. 17, 129.
Barrett, J. C. and Clement, C. F. (1991) J. Aerosol Sci. 22, 327.
Barrett, J. C. and Fissan, H. (1989) J. Colloid Interface Sci. 130, 498.
Clement, C. F. (1985) Proc. Roy. Soc. A 398, 307.
Finlayson, B. (1972) The Method of Weighted Residuals and Variational Principles. Academic Press, New York.
Fisk, J. A. and Katz, J. L. (1996) J. Chem. Phys. 104, 8649.
Hale, B. N. (1988) In Lecture Notes in Physics (Edited by Wagner P. E. and Vali, G.), Vol. 309, p. 323. Springer,

New York.
HaK meri, K. and Kulmala, M. (1996) J. Chem. Phys. 105, 7696.
HaK meri, K., Kulmala, M., Krissinel, E. and Kodenyov, G. (1996) J. Chem. Phys. 105, 7683.
Ingham, D. B. (1975) J. Aerosol Sci. 6, 125.
Kane, D. and El-Shall, M. S. (1996) J. Chem. Phys. 105, 7617.
Larrode, F. E., Housiadas, C. and Drossinos, Y. (1998) J. Aerosol Sci. 29, S91.
LeH ve( que, M. A. (1928) Ann. Mines 13, 201.
Lide, D. R. (1995) Handbook of Chemistry & Physics, 76th Edition, CRC Press, Boca Raton.
Nguyen, H. V., Okuyama, K., Mimura, T., Kousaka, Y., Flagan, R. C. and Seinfeld, J. H. (1987) J. Colloid Interface

Sci. 119, 491.
Nusselt, W. (1910) Z. Ver. Dt Ing. 54, 1154.
Oxtoby, D. W. (1992) J. Phys.: Condens. Matter 4, 7627.

648 J. C. Barrett and T. J. Baldwin



Press, W. H., Teukolsky, S. A., Vetterlin, W. T. and Flannery, B. P. (1992) Numerical Recipes, 2nd Edition.
Cambridge University Press, Cambridge.

Rudek, M. M., Fisk, J. A., Chakarov, V. M. and Katz, J. L. (1996) J. Chem. Phys. 105, 4707.
Vohra, V. and Heist, R. H. (1996) J. Chem. Phys. 104, 382.
Wilck, M., HaK meri, K., Stratmann, F. and Kulmala, K. (1998) J. Aerosol Sci. 29, 899.

APPENDIX

The derivations in this appendix are given in terms of the slightly more general forms: h(r, z)"R(r)Z(z) and
h(r, z/Le)"R(r)F(Z(z)). With appropriate choices of the functions R, Z and F, these include our approximate forms
near the tube axis (R(r)"a

1
s
1
(r), Z(z)"exp(!b2

1
z) and F(Z)"Z1@L%) and near the tube wall (R(r)"1!r,

Z(z)"31@3/M!(1/3)z1@3N and F(Z)"ZLe1@3).
(i) Derivation of equations (14) and (15): We have ¹"¹

8
#*¹ )R(r) )Z(z) and (assuming c

8
;dc),

c"*c )R(r)F[Z(z)], and hence equation (12) can be written as

2f (¹)

(ln S)3
)
dZ

dz C
ln S

2

f @(¹)

f (¹)
)*¹R(r)!

L
LZAln[c

8
#*c.R(r)F(Z)]#

B

[¹
8
#*¹R(r)Z(z)]BD"0, (A1)

where we have used equation (9) for S(r, z). We now equate the terms in square brackets to zero, expand to "rst
order in e, and use the fact that S"S

.!9
and LS/LZ"0 at Z"Z(z

0
) to obtain

ln(S
.!9

)

2

f @(¹
0
)

f (¹
0
)
*¹R(r)#A

ln(S
.!9

)

2
(*¹R(r))2

d2

d¹2
0

Mln( f (¹
0
)N

!C
d2

dZ2
0

Mln(F(z
0
))N!

2B(*¹R(r))2

¹3
0

D BZ0
e"0, (A2)

where Z
0
"Z(z

0
) and ¹

0
"¹(z

0
, r)"¹

8
#d¹. We now multiply through by Z

0
noting that *¹R(r)Z

0
"d¹,

and use classical theory to estimate the second derivative of ln( f (¹
0
)) with respect to ¹

0
to be +3/¹2

0
. Then

equation (A2) can be written as

A!Z2
0

d2

dZ2
0

Mln(F(Z
0
))N#

3 ln(S
.!9

)

2 A
d¹
¹

0
B

2
#

2Bd¹2

¹3
0
Be"!

ln(S
.!9

)

2

f @(¹
0
)

f (¹
0
)
d¹. (A3)

Now with F(Z)"ZL%~1 (near the tube axis) or F(Z)"Le1@3Z (near the wall), the "rst term in the bracket on the left
is of order Le~1 (or 1), whereas the second term is of order (d¹/¹

0
)2. Also, the third term is of order d¹/(Le.¹

0
)

near the axis. This follows from equation (8), which can be written, Bd¹Le"(¹
8
#d¹)2!d¹2 (near the wall,

Bd¹+(¹
8
#d¹)2!d¹2 and the term is of order d¹/¹

0
). Assuming d¹;¹

0
, we can ignore the second and

third terms. Using the appropriate forms of F(Z) in equation (A3) then gives equations (14) and (15).
(ii) Derivation of equations (17) and (18): To obtain approximation for p

z
we ignore the variation of J with both

K and f (¹) near the peak to write (from equation (3)),

L2ln J

Lz2
"

dZ

dz

d

dZA
dZ

dz

dln J

dZ B+A
dZ

dz B
2

GA
2 f (¹)

(ln S)3B
L2ln S

LZ2
!

6 f (¹)

(ln S)4 A
Lln S

LZ B
2

H

#A
2 f (¹)

(ln S)3B
Lln S

LZ A
dZ

dz B
d

dZA
dZ

dz B. (A4)

To evaluate p
z

we equate the second derivative of ln J from equation (16) to the right-hand side of this equation,
where we should evaluate the partial derivatives at the nucleation peak, i.e. at Z(z

1
). However, to a good enough

approximation we can evaluate them at the saturation peak, Z(z
0
). Then all the terms involving Lln S/LZ vanish.

Furthermore, the second derivative, L2ln S/LZ2 is given by the terms in square brackets in equation (A2), where, as
we have just argued, the term involving B can be ignored. Then we "nd

!

1

p2
z

"A
dZ

0
dz B

2 d2

dZ2
0

Mln(F(Z
0
))N

2 f (¹)

(ln S
.!9

)3
. (A5)

Substituting in the appropriate forms for Z(z) and F(Z) and rearranging yields equations (17) and (18).
(iii) Derivation of equation (20): To evaluate p

r
at the tube axis, we need to "nd L2ln J

1
/Lr2 which, ignoring

changes in f (¹) and the prefactor K, is given by

L2ln J
1

Lr2
"A

2 f (¹)

(ln S
.!9

)3)B
L2ln S

.!9
Lr2

!

6 f (¹)

(ln S
.!9

)4 A
Lln S

.!9
Lr B

2
. (A6)
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Note that J
1

is the nucleation rate at the peak saturation so it is S
.!9

(equation (9)) that appears on the right-hand
side and not S (equation (6)). At r"0, LS

.!9
/Lr"0 so the second term on the right of equation (A6) vanishes. The

derivative in the "rst term at r"0 can be evaluated from equation (9), putting R"a
1
s
1
(r),

L2ln S
.!9

Lr2
+!(1!Le~1)

s@
1
(r)2

s
1
(r)2

#(1!Le~1)
sA
1
(r)

s
1
(r)

"!2j(1!Le~1), (A7)

where j is minus the coe$cient of r2 in s
1
(r), i.e. s

1
(r)"1!jr2#O(r4). Using equation (A7) in equation (A6) and

equating the result to !1/p2
r

gives the expression equation (20) for p
r
.
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